Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Prove that if $f \in L^1[a, b]$, then

$$\lim_{n \to \infty} n \int_a^b \sin\left(\frac{x}{n}\right) f(x) \ dx = \int_a^b x f(x) \ dx \ .$$

2. Let $E \subseteq \mathbb{R}$ be measurable and f(x) a nonnegative measurable function on E such that the limit

$$\lim_{n \to \infty} \int_E [f(x)]^n \, dx = L \; ,$$

exists and $0 < L < \infty$. Prove that $m\{x \in E : f(x) = 1\} = L$.

3. Let f be an integrable function on [0, 1] such that for any $0 \le a < b \le 1$,

$$\int_{a}^{(a+b)/2} f(x) \, dx = \int_{(a+b)/2}^{b} f(x) \, dx \; .$$

Prove that f is constant almost everywhere.

4. Does there exist a measurable set E on [0, 1] such that for any $0 \le a < b \le 1$,

$$m(E \cap [a,b]) = \frac{b-a}{2} ?$$

5. Let f(x) be an integrable function on the interval [a, b]. Define recursively the functions:

$$f_0(x) = f(x), \quad f_k(x) = \int_a^x f_{k-1}(t) \, dt, \quad k \ge 1; \quad a \le x \le b$$

Prove that the series

$$F(x) = \sum_{k=1}^{\infty} f_k(x)$$

converges uniformly on [a, b] and that F(x) is an absolutely continuous function on [a, b].

6. Let f be absolutely continuous on [a, b]. Prove that f is Lipschitz on [a, b] if and only if there exists a c > 0 such that |f'| < c almost everywhere on [a, b].

7. Prove that if $f \in L^{4+\varepsilon}[0,1]$, where $\varepsilon > 0$, and $g(x) = f(x^2)$, then $g \in L^2[0,1]$.

8. Let $f \in L^p(E)$ where E is set of finite measure and let $p > r \ge 1$. Prove that $f \in L^r(E)$ and

$$||f||_r \le (mE)^{\frac{1}{r} - \frac{1}{p}} ||f||_p$$
.