\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Prove that if $f \in L^{1}[a, b]$, then

$$
\lim _{n \rightarrow \infty} n \int_{a}^{b} \sin \left(\frac{x}{n}\right) f(x) d x=\int_{a}^{b} x f(x) d x
$$

2. Let $E \subseteq \mathbb{R}$ be measurable and $f(x)$ a nonnegative measurable function on E such that the limit

$$
\lim _{n \rightarrow \infty} \int_{E}[f(x)]^{n} d x=L
$$

exists and $0<L<\infty$. Prove that $m\{x \in E: f(x)=1\}=L$.
3. Let f be an integrable function on $[0,1]$ such that for any $0 \leq a<b \leq 1$,

$$
\int_{a}^{(a+b) / 2} f(x) d x=\int_{(a+b) / 2}^{b} f(x) d x
$$

Prove that f is constant almost everywhere.
4. Does there exist a measurable set E on $[0,1]$ such that for any $0 \leq a<b \leq 1$,

$$
m(E \cap[a, b])=\frac{b-a}{2} ?
$$

5. Let $f(x)$ be an integrable function on the interval $[a, b]$. Define recursively the functions:

$$
f_{0}(x)=f(x), \quad f_{k}(x)=\int_{a}^{x} f_{k-1}(t) d t, \quad k \geq 1 ; \quad a \leq x \leq b
$$

Prove that the series

$$
F(x)=\sum_{k=1}^{\infty} f_{k}(x)
$$

converges uniformly on $[a, b]$ and that $F(x)$ is an absolutely continuous function on $[a, b]$.
6. Let f be absolutely continuous on $[a, b]$. Prove that f is Lipschitz on $[a, b]$ if and only if there exists a $c>0$ such that $\left|f^{\prime}\right|<c$ almost everywhere on $[a, b]$.
7. Prove that if $f \in L^{4+\varepsilon}[0,1]$, where $\varepsilon>0$, and $g(x)=f\left(x^{2}\right)$, then $g \in L^{2}[0,1]$.
8. Let $f \in L^{p}(E)$ where E is set of finite measure and let $p>r \geq 1$. Prove that $f \in L^{r}(E)$ and

$$
\|f\|_{r} \leq(m E)^{\frac{1}{r}-\frac{1}{p}}\|f\|_{p}
$$

